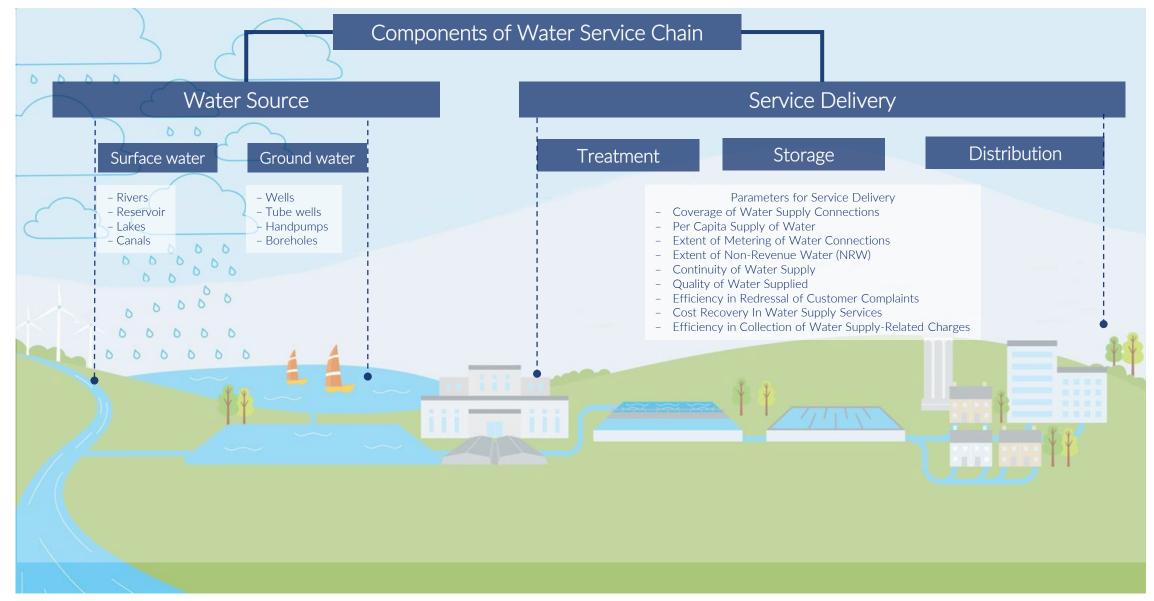


Assessment of water situation across the water service chain in Kachchh region – A Case study of Anjar and Gandhidham City


> GUIDE: AASIM MANSURI CO-GUIDE: PRIYADARSHNI CHOUDHARY

> > STUDY BY RUTVIK BHATT | PUI21295

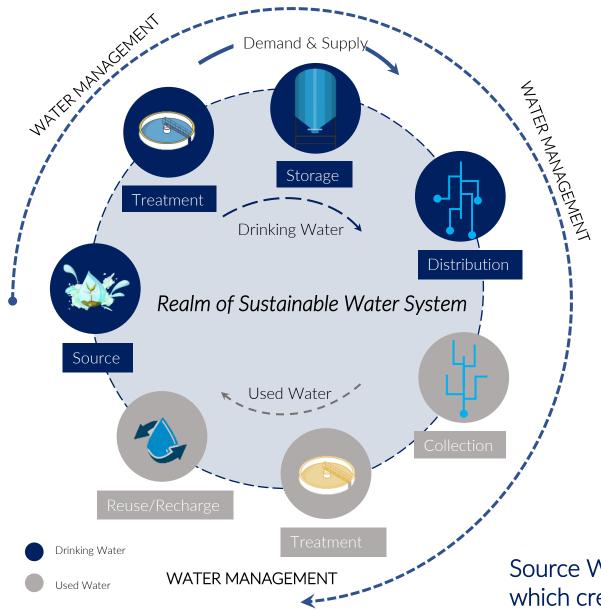
DRP SPRING SEMESTER 2023 MASTER OF INFRASTRUCTURE PLANNING FACULTY OF PLANNING CEPT UNIVERSITY

CEPT UNIVERSITY

Water Service Chain comprises of Water source and Service delivery...

Source: thameswater

Sustainable Water Chain is an interface between Source, Service delivery and Management


Source water sustainability refers to the long-term ability to maintain a reliable supply of high-quality drinking water while protecting the natural systems that provide this water WHAT?

Sustainable water system is a system which provides adequate water quality and appropriate water quantity for a given need/time without compromising the future demand

Efficient Water Management can help survive day zero situation

Most of Cape Town relies on surface source (dams) ULB Measures to overcome Day Zero to supply the city with water. Three years of inadequate rainfall caused dam levels to fall to 21% Below average Rainfall pattern Demand incentives Intensive supply management Warm Mediterranean climate Behavioral change How Day Zero can be avoided **Climate Change Impacts** Investment in water Water Conservation Population Growth infrastructure **DAY ZERO!** Diversify water sources Supply Side Mismanagement Source: CAPE TOWN: TOWARDS A SUSTAINABLE WATER FUTURE: Urban Water Atlas

Balancing the realm of sustainable water system....

- Sustainability of source not only relies on upstream side where the source is located but also on downstream side where it is distributed i.e., service side
- Sustainability of whole system not only depends on how water is used but also includes alternate technology which alleviates water consumptions, considers usage of reuse water and stormwater
- The whole system will be sustainable only when there is efficiency in supply and demand side of service delivery

On the supply side, it is fundamental to enhance

- Operation and maintenance capabilities of water utilities,
- Reducing non-revenue water (NRW), leakages,
- Energy use
- Capacity of the workforce
- Cost Recovery through tariff

On the Demand side, it is fundamental to enhance

- Adoption of water efficient technology
- Less water intensive industrial processes

Source Water Sustainability and efficient service delivery are corelated which creates sustainable Water System and goes hand in hand

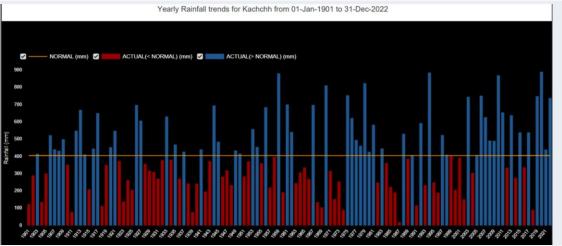
Source: (https://www.iwapublishing.com/news/sustainability-water-supply)

Aim & Objectives

"The aim of the study is to assess the water situation across the water service chain in Kachchh region" – A case of Anjar and Gandhidham"

- To understand the existing water situation from source and service delivery perspective in Anjar and Gandhidham.
- To analyze the advances/lacunae of the existing water situation in both the cities.
- To explore alternative urban water management practices to strengthen existing water source and service delivery. Research Design
- The approach for the assessment would be based on Qualitative and Quantitative data Sets based on literature review, Field visits and stakeholder consultation

Scope & Limitation

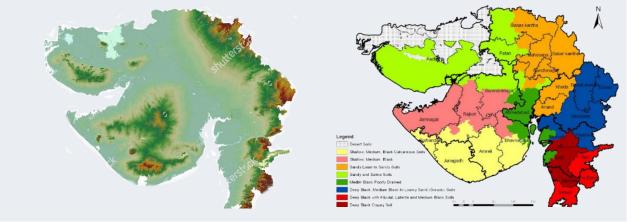

- To understand and achieve the sustainable approaches, the study is conducted on two cities of Kutch District: Anjar and Gandhidham Municipal Limits
- The study excludes assessment of slum pockets as separate units
- The study's assessment is done on the components of water supply chain for which primary survey and PAS-SLB parameters has been considered (Quantity, Quality, Service delivery- Supply days, Hours, Complaint redressal)

Methodology

Objectives	Tasks	Tools	Outcomes
To understand the existing water situation from source and service delivery perspective in Anjar and Gandhidham To analyze the advances/lacunae of the existing water situation in both the cities	 To understand the water service chain To identify parameters which will help assessing the situation on Water Service Chain FGDs with different stakeholders To conduct on field surveys to understand the existing water situation from citizen 	 Literature Review - On Water service chain, Existing situation, regional water supply setting in the region Designing a questionnaire to know about before and current scenario of water through the citizens perspective. (Primary Survey) 	• Will receive clear understanding of water situation and impacts due to the Narmada projects
To explore urban water management practices to strengthen existing water source and service delivery	• To strengthen the scope for RWH by Community Participation and Policy level intervention	 Analyzing Primary and Secondary data Literature Review– Focusing on water conservation practices and technological initiatives 	• Compendium of best practices which can be easily adopted for Kachchh region

The region is historically water stressed due erratic rainfall and chronic drought scenario...

About the Region



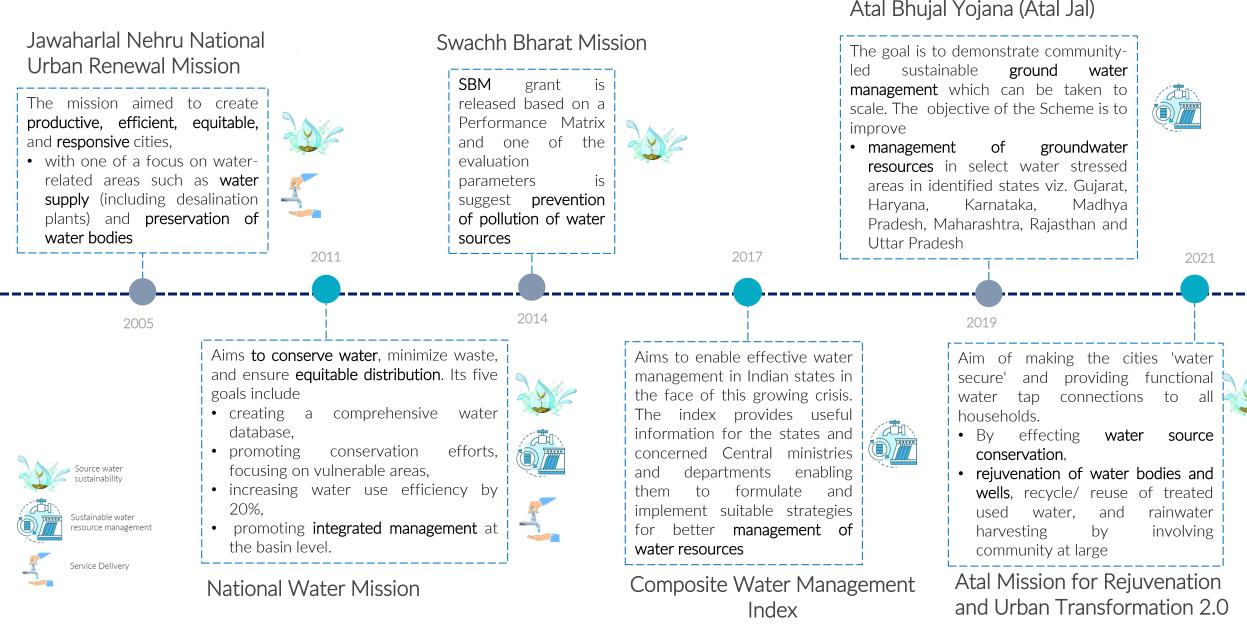
Rainfall

- The region has erratic rain fall and prone to drought
- Drought happens once in 2.5-3 years
- However, we can see there is an increase in the annual average rainfall in recent years

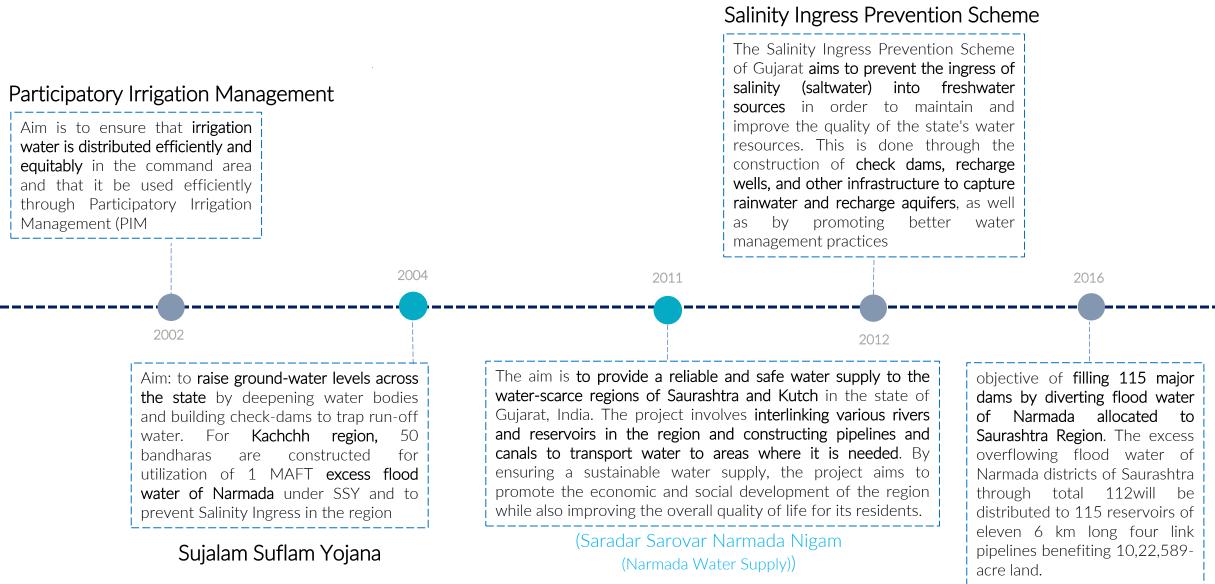
Topography

- The region have 97 streams & rivers but are non perennial and have high run-off rate due to higher slope topography
- Region has sandy to saline soil typology which has very low water holding Capacity

Groundwater


5-10 m Pre monsoon water levels

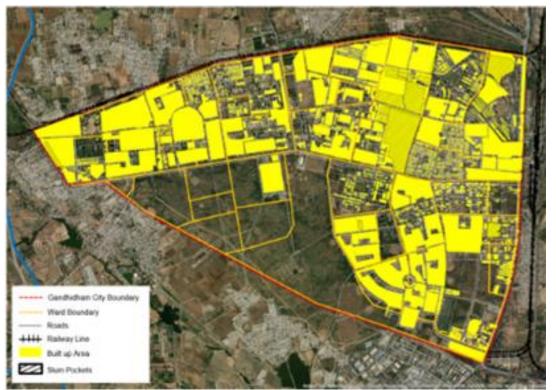
20 m Post monsoon water levels


Fresh to saline Quality of Ground water 378.2 mm Average Rainfall 45.60° Max Temperature

11.50 Min Temperature

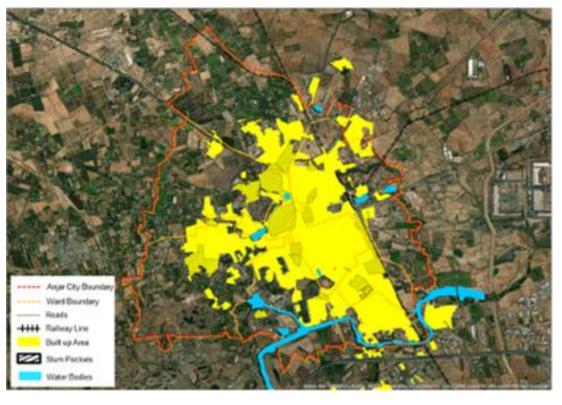
National Initiatives addresses the realm of sustainable service chain

However, the state initiatives are limited to source augmentation...



Swarnim Gujarat Saurashtra-Kutch Water Grid Project.

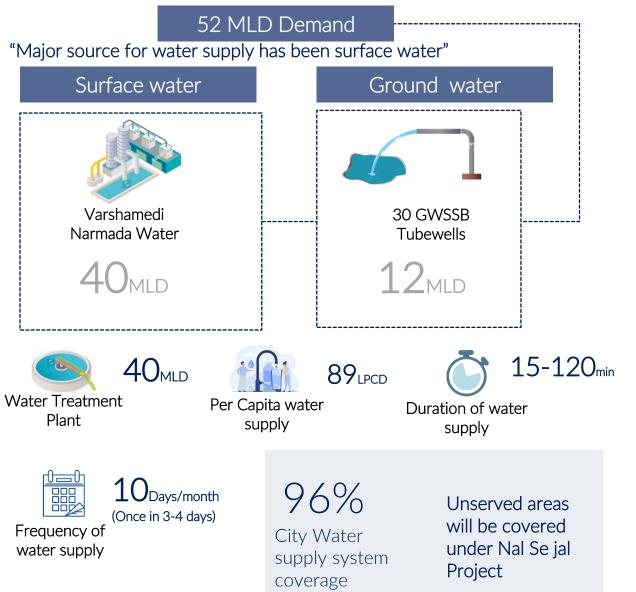
SAUNI Yojana


Gandhidham and Anjar can be called twin cities located 10-12 Km apart ...

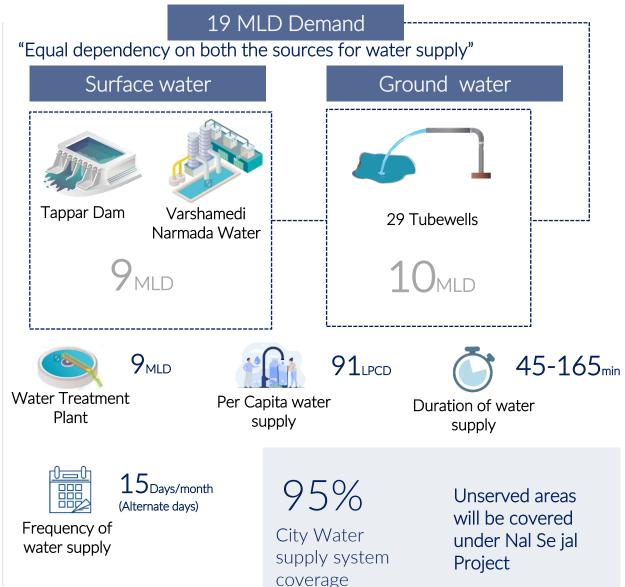
GANDHIDHAM

30 14 Α 17.92mm **Total Wards** Class Area (sq.Km.) Annual Rainfall 400,000 85,120 69,880 13,950 **City Population** Total Households Slum Population Slum HH

ANJAR



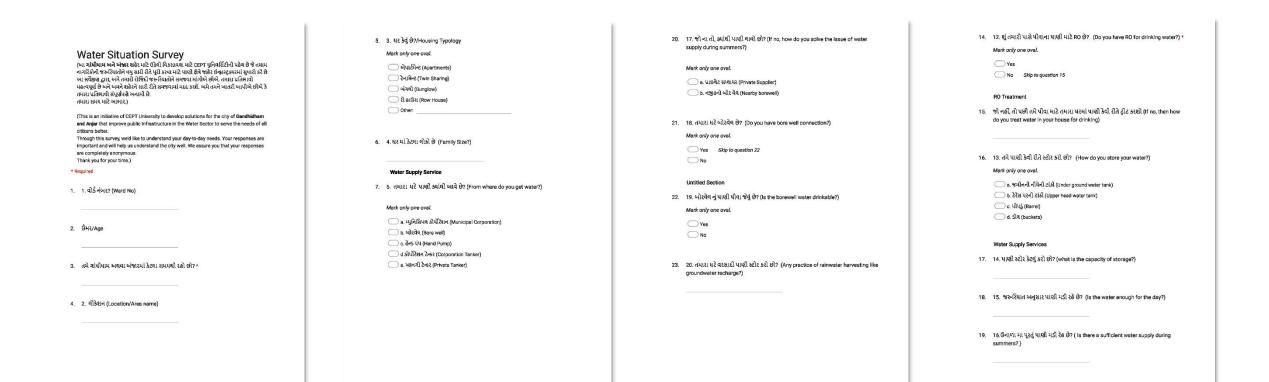
1812B15.37mmArea (sq.Km.)Total WardsClassAnnual Rainfall109,28326,03629,2149,738City PopulationTotal HouseholdsSlum PopulationSlum HH


Source: Anjar Area Development Authority, Pas/Know your city, Gandhidham Area Development Authority, Pas/Know your city

Existing water situation in the two cities

GANDHIDHAM

ANJAR



Methodology

Objectives	Tasks	Tools	Outcomes
To understand the existing water situation from source and service delivery	• To understand the water service chain	• Literature Review – On Water service chain,	• Will receive clear understanding of water
perspective in Anjar and Gandhidham	• To identify parameters which will help assessing the situation on Water Service Chain	Existing situation, regional water supply setting of the regionDesigning a questionnaire	situation and impacts due to the Narmada projects
To analyze the advances/lacunae of the	• FGDs with different stakeholders	to know about before and current scenario of water	
existing water situation in both the cities	• To conduct on field surveys to understand the existing water situation from citizen	 through the citizens perspective. (Primary Survey) Analyzing Primary and 	
		Secondary data	
To explore urban water management practices to strengthen existing water source and service delivery	• To strengthen the scope for RWH by Community Participation and Policy level intervention	• Literature Review– Focusing on water conservation practices and technological initiatives	• Compendium of best practices which can be easily adopted for Kachchh region

Survey Methodology

- The type of survey is based on stratified random sampling in which people above the age of 35 is consider for survey to understand the scenario before Narmada water Supply
- The medium for conducting surveys were done on site as well as online link was circulated amongst the several citizens of the both cities
- Taking into linguistic considerations, the questionnaire was design in Gujarati as well to get maximum responses

Approach

Primary Survey

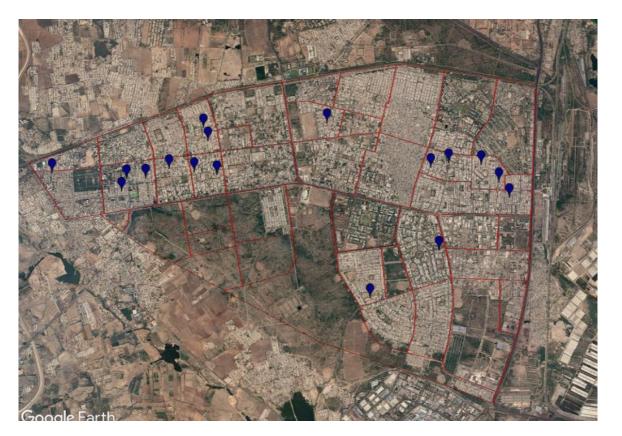
- Household survey HIG and MIG households with a specific age group
- Site observations
- Visit to WTP and ESR
- Understanding the cities water supply services through people's perception (FGD's)

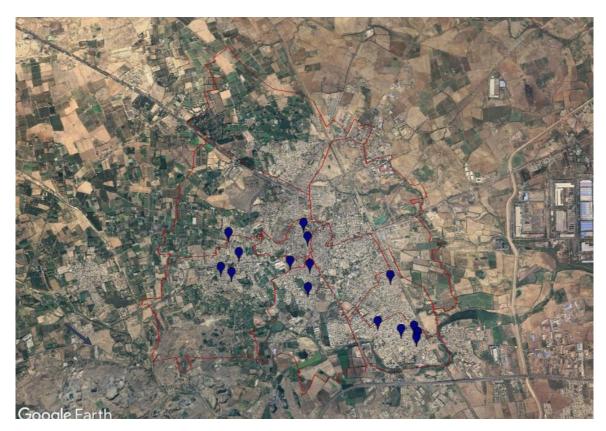
Stakeholder Meeting

- Chief Engineers
- GWIL, GWSSB engineers (Roles and function of the organization, Current responsibilities)
- Pump Men

Secondary Survey

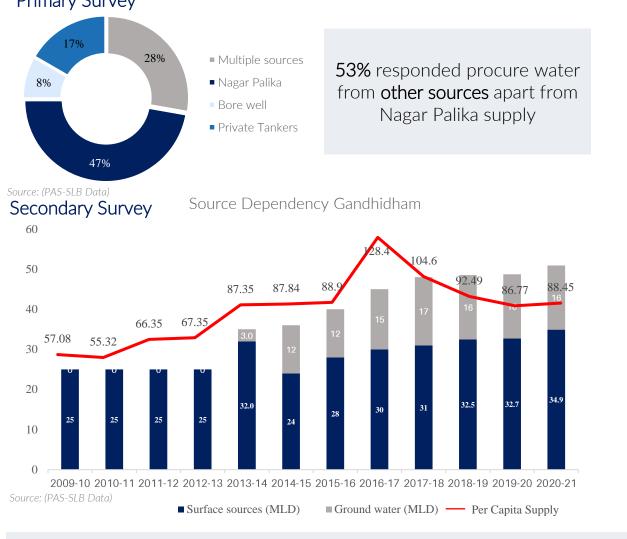
- Desktop literature review
 - (Literature on water situation dating from 1980's to present scenario)
 - News articles, Research papers on previous assessment on Narmada project



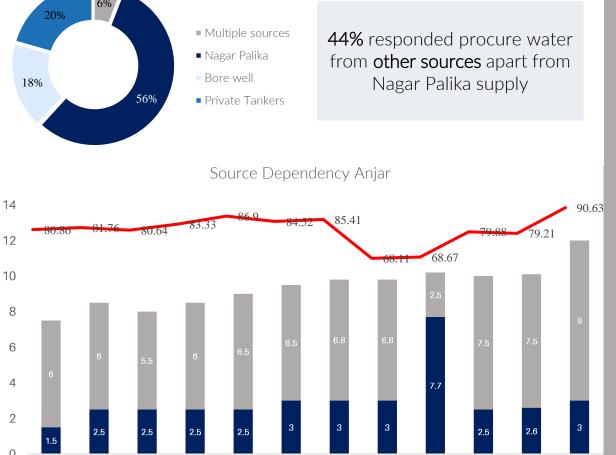


Survey Points GANDHIDHAM

Population	400,000
Wards	13
Slum Population	69,880


Population	109,283
Wards	9
Slum Population	29,214

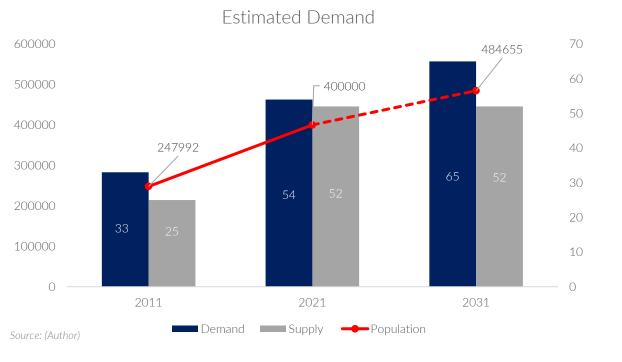
Survey Analysis (Source)


Majority of the respondent from both cities depends on multiple sources of water supply, apart from Municipal Supply...

GANDHIDHAM Primary Survey

As there is increase in population, city has also augmented the water source, but **per** capita supply is decreasing

ANJAR



2009-10 2010-11 2011-12 2012-13 2013-14 2014-15 2015-16 2016-17 2017-18 2018-19 2019-20 2020-21 ■ Surface sources (MLD) ■ Ground water (MLD) — Per Capita Supply

As there is increase in population, city has also augmented the water source, and there is **increase in per capita water supply**

Currently the supply can meet the demand in both the cities, however future scenarios indicate huge gaps...

GANDHIDHAM

ANJAR

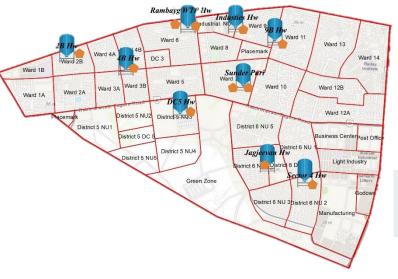
Cities need to take initiatives to augment their own water sources

Survey Analysis (Services)

Install treatment capacities are sufficient, however WTP of Gandhidham is non-functional since more than a year...

GANDHIDHAM

- The Rambaugh facility has been non-functional for certain years now, with only chlorination processes taking place.
- A design capacity of 40 MLD


ANJAR

- The WTP system is functioning well however periodic checking is required, by doing so, it will assure quality water supply
- A design capacity of 9 MLD

Both the cities have sufficient capacity for storage infrastructure to adopt 24X7 water supply system

GANDHIDHAM

For 24X7 water supply the storage capacity should be 1/3 of the estimated demand.

(400000*135*1/3= 1800000)

32.8 ML Total Capacity and required capacity is of 18 ML

Name of Headworks	Storage		
(Gandhidham)	Capacity of ESR (MLD)	Capacity of Sumps (MLD)	
6 Industries	01	02	
9B	01	02	
Sundar Puri	1.6	3.2	
2B	01	01	
4B	01	02	
DC 5	01	01	
Jagjeevan	01	01	
Rambaugh WTP	2.5	7.5	
Sector 4	01	02	
Total	11.1	21.7	

• The ULB states that in order to increase the amount of water available and address. problems linked to water pressure, particularly those that are present in periphery regions, the storage capacity at all HWs has to be increased. However, there are 7 proposed ESRs under the "Nal Se Jal" program, which will assist the city in providing a better supply system.

Source: (Guidelines for Planning, Design and implementation of 24x7 water supply System, MoHUA)

Name of Headworks

(Anjar)

Bhuj Road

Nagalpur

APMC

Total

Chitrakut

Viiav Nagar

Kishorbal Mandir

For 24X7 water supply the storage capacity should be 1/3 of the estimated demand.

(109283*135*1/3= 1800000)

14.4 ML Total Capacity and required capacity is of 5 ML

Capacity of Sumps (MLD)

02

3.2

2

0.35

0.80

1.50

9.85

Storage

• The Nal Se Jal project will augment the city WSS from intermittent to daily supply system (15 mld WTP at Nagalpur and ESRs and UG Sumps at Kadash Circle, APMC and Chitrakut)

Capacity of ESR (MLD)

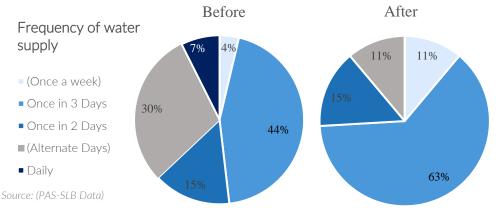
01

01

01

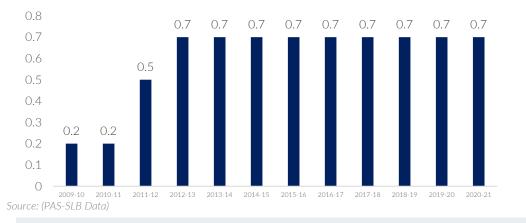
0.30

0.30

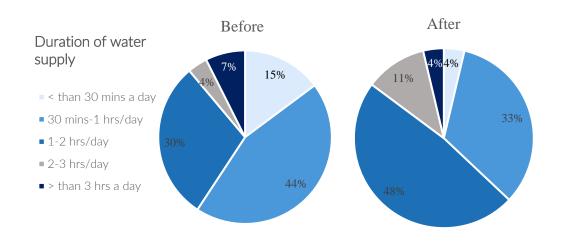

01

4.6

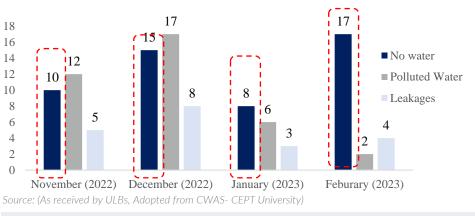
A Shift towards equitable distribution system can be observed post implementation of Narmada sardar Sarovar project


GANDHIDHAM

Primary Survey

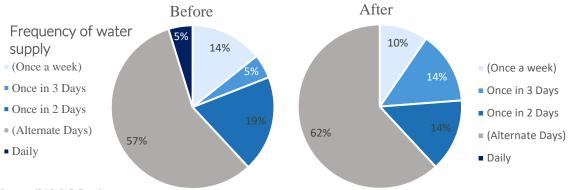


Secondary Survey


Continuity of Water Supply (Hrs)

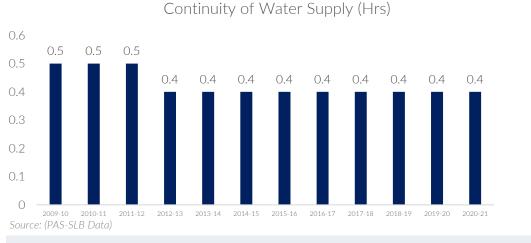
After 2011-12 year, there is increase and consistency in continuity of water supply that is of **42 mins (At frequency once in 3 days)**

Type of Complaint

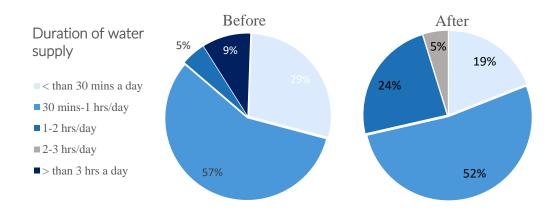


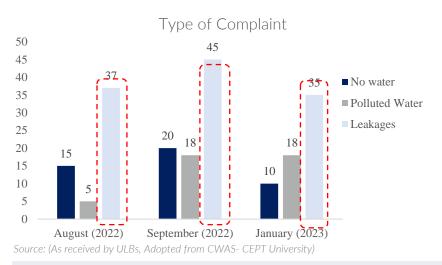
Water supply inconsistency has resulted in a dire situation where there is no water available. This happens when there is a skipped day in the supply cycle, causing an inability to provide water or supplied on a weekly basis.

According to Anjar's response, there has been no alteration in the frequency or duration of water supply since the arrival of Narmada sardar Sarovar project


ANJAR

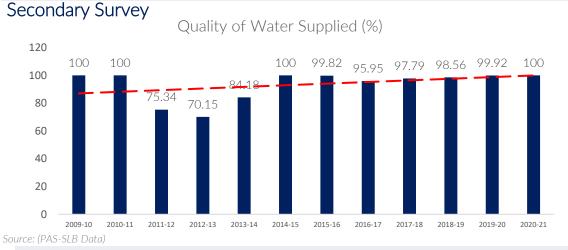
Primary Survey




Source: (PAS-SLB Data)

Secondary Survey

After 2011-12 year, there is decrease and consistency in continuity of water supply that is of 24 mins (At frequency of Alternate Days)


So far from the registered complaints received by the ULB, the uncommon complaint was of water supply which is due to anomaly in the system

92% of the Gandhidham respondent's preferer filter bottled water over municipal for drinking

GANDHIDHAM

Although majority of the respondent believed to have a GOOD quality of water supply, but half of them still rely on Bottled Drinking water.

As per secondary Data the quality has been remained consistent and up-to the standards but during the visit to WTP, it has been found dysfunctional since more than a year

Report	Generation Date:	16-09-2022						
Sample	Received Date:							
Sr.No.	SapImle Location	рН	Turbidity, NTU	Total Dissolved Solids (TDS), mg/l	Chloride, mg/l	Alkalinity, mg/l	Hardness, mg/l	E. Coli
	Drinking Water Standards (IS 10500 : 2012)	6.5 - 8.5	1	500	250	200	200	Shall not be Detectable in 100 ml sample
1	Khodiyar Nagar Borewell, G.DM - GMC	7.5	0.1	1650	660	30	1030	Not Detectable
2	A. V. Joshi Slum (Municipal Supply), Sector 10, GIDC	7.8	0.6	378	175	15	545	Detectable
3	Sector 10, Gandhidham Municiapl Corporation (GMC)	7.8	0.4	335	157	15	330	Detectable
4	Municipal Supply, Sector - 10, GIDC, Gandhidham	7.7	0.2	401	167	10	625	Not Detectable
5	Municipal Water Supply of Gandhidham School, GIDC, Sector 10	8.0	0.1	378	170	10	195	Not Detectable
6	Ward No.5 Borewell, Gandhidham	6.9	0.1	2941	1859	55	995	Not Detectable
7	GM, Sector - 10	7.7	0.4	351	172	25	530	Detectable
8	Municiapl Water Supply, A. V. Joshi GIDC. Sector - 10	8.0	0.7	396	182	10	290	Not Detectable
9	Anjar Ward No. 9, Vijaynagar	8.0	0.5	510	207	15	470	Not Detectable
10	Anjar Ward No. 2, APMC	7.6	0	571	222	25	1095	Not Detectable
10	Anjar Ward No. 2, APMC Anjar Ward No. 6, Mahadevnagar	7.6	0 1.3	571	222	25	1095 330	Not Detecta

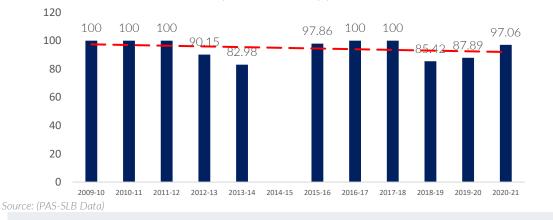
Type of Complaint

Source: (CWAS- CEPT University)

17 17 18 15 16 ■ No water 14 12 12 ■ Polluted Water 10 Leakages November (2022) December (2022) January (2023) Feburary (2023) Source: (As received by ULBs, Adopted from CWAS- CEPT University)

After unreliability, quality related complaints are register in the city which justifies the drinking preferences, leading to the dependency on private supplier

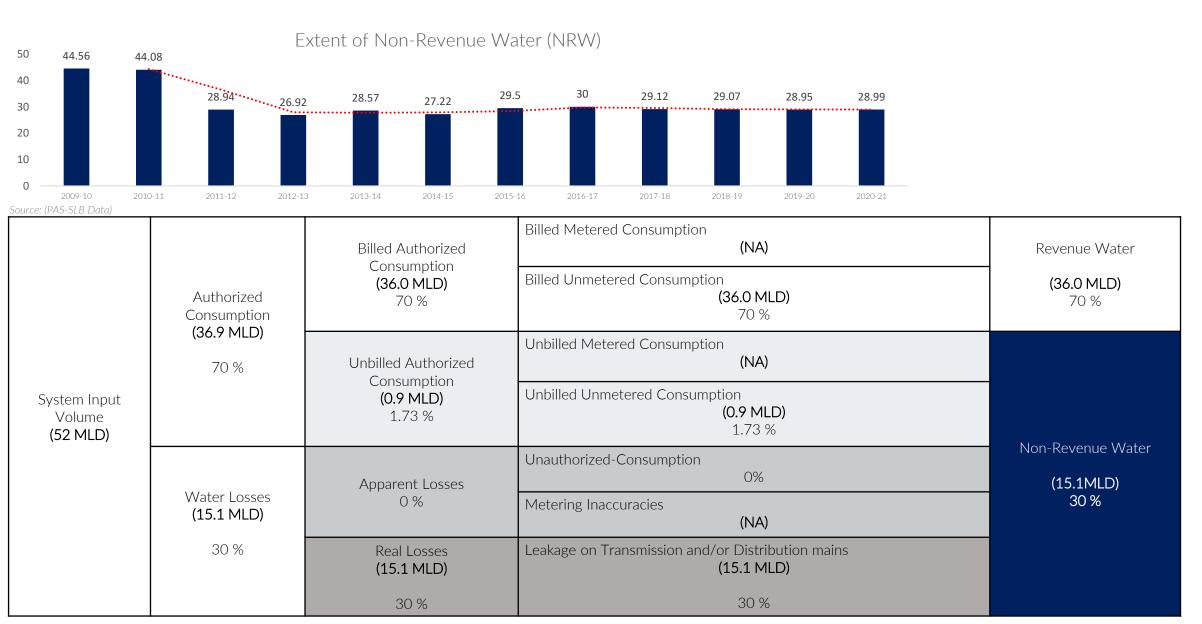
Over half of the responded in Anjar prefers filter bottled water over municipal for drinking



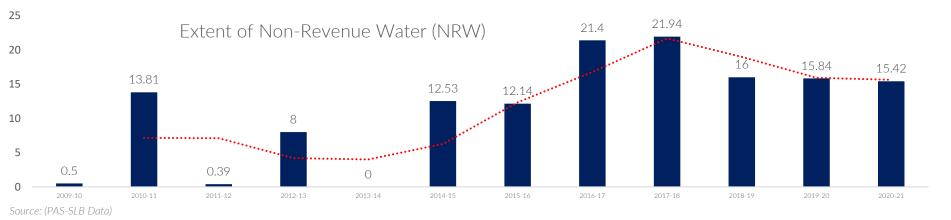
Source: (PAS-SLB Data)

Almost 1/3rd of the respondent still prefer Private supplier over Nagar Palika for drinking purpose. And rest of respondent which rely on Nagar palika water, 58.3% have RO system.

Quality of Water Supplied (%)


As Data showcase the quality has been remained consistent

Report	Generation Date:	16-09-2022						
Sample	Received Date:	02-09-2022						
Sr.No.	SapImle Location	рН	Turbidity, NTU	Total Dissolved Solids (TDS), mg/l	Chloride, mg/l	Alkalinity, mg/l	Hardness, mg/l	E. Coli
	Drinking Water Standards (IS 10500 : 2012)	6.5 - 8.5	1	500	250	200	200	Shall not be Detectable in 100 ml sampl
1	Khodiyar Nagar Borewell, G.DM - GMC	7.5	0.1	1650	660	30	1030	Not Detectable
2	A. V. Joshi Slum (Municipal Supply), Sector 10, GIDC	7.8	0.6	378	175	15	545	Detectable
3	Sector 10, Gandhidham Municiapl Corporation (GMC)	7.8	0.4	335	157	15	330	Detectable
4	Municipal Supply, Sector - 10, GIDC, Gandhidham	7.7	0.2	401	167	10	625	Not Detectable
5	Municipal Water Supply of Gandhidham School, GIDC, Sector 10	8.0	0.1	378	170	10	195	Not Detectable
6	Ward No.5 Borewell, Gandhidham	6.9	0.1	2941	1859	55	995	Not Detectable
7	GM, Sector - 10	7.7	0.4	351	172	25	530	Detectable
8	Municiapl Water Supply, A. V. Joshi GIDC, Sector - 10	8.0	0.7	396	182	10	290	Not Detectable
9	Anjar Ward No. 9, Vijaynagar	8.0	0.5	510	207	15	470	Not Detectable
10	Anjar Ward No. 2, APMC	7.6	0	571	222	25	1095	Not Detectable
11	Anjar Ward No. 6, Mahadevnagar	7.4	1.3	531	217	20	330	Not Detectable


Type of Complaint 50 45 37 40 35 ■ No water 35 ■ Polluted Water 30 25 Leakages 20 18 18 20 15 15 10 10 5 5 0 August (2022) September (2022) January (2023) Source: (As received by ULBs, Adopted from CWAS- CEPT University)

Post monsoon the quality of water has affected probably because of leakages in the system

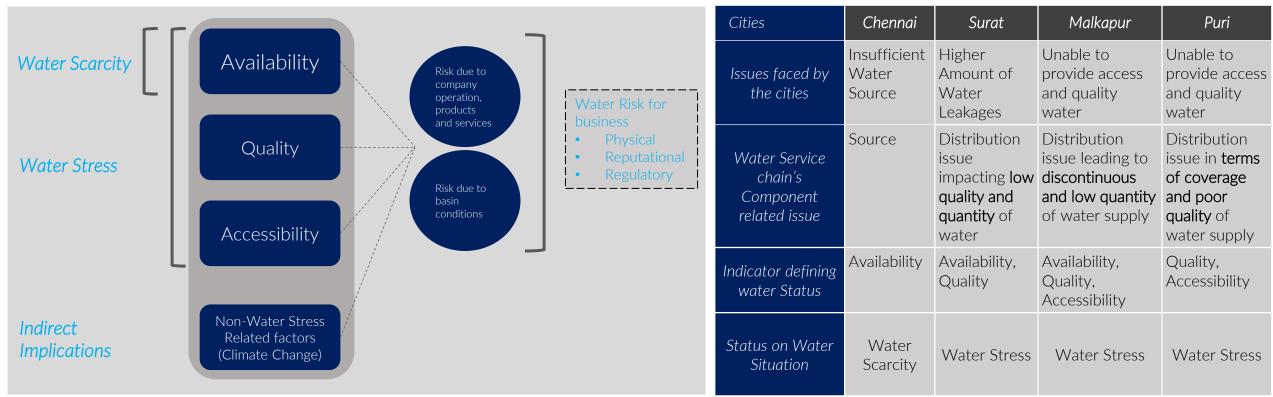
Water Balance calculation shows higher NRW then the set SLB benchmark of 20%, city need to address the situation of water loss

Water Balance calculation shows higher NRW then the set SLB benchmark of 20%, city need to address the situation of water loss

	Authorized Consumption	Billed Authorized Consumption (10.15 MLD) 53.42 %	Billed Metered Consumption (NA) Billed Unmetered Consumption (10.15 MLD) 53.42 %	Revenue Water (10.15 MLD) 53.42 %
System Input Volume	(11.95 MLD) 62.89 %	Unbilled Authorized Consumption (1.80 MLD) 9.47 %	Unbilled Metered Consumption (NA) Unbilled Unmetered Consumption 1.80 MLD) 9.47 %	
(19 MLD)	Water Losses (7.05 MLD)	Apparent Losses 0 %	Unauthorized-Consumption 0% Metering Inaccuracies (NA)	Non-Revenue Water (7.05MLD) 37.10 %
	37.10 %	Real Losses (7.05 MLD)	Leakage on Transmission and/or Distribution mains (7.05 MLD)	
		37.10 %	37.10 %	

Key Findings

		Gandhidham	Anjar		Remarks	
	Water Availability	54 MLD vs 51 MLD	15 MLD vs 12 MLD Demand Supply Gap	Gandhidham	89 LPCD which is on decreasing trend (supplied days)	
Source	,	Demand Supply Gap		Anjar	91LPCD which is on increasing trend	
	Treatment	Rambaugh WTP is	Anjar WTP is functional but	Gandhidham	Chlorination takes place with no other treatment process	
		not functional	lacks on periodic check	Anjar	Treatment taking place as per the defined standards	
		Total storage	Total storage	Gandhidham	For 24X7 supply required storage is 18 ML	
		available 32.8 ML	available 14.4 ML	Anjar	For 24X7 supply required storage is 5 ML	
Distribution	of Water (I Supplied F	Supplied hrs: 1-2 (Primary Survey) & Frequency of once in 3 days	Supplied hrs: 0.5-1 (Primary Survey) & Frequency of Alternate days	Gandhidham	Inconsistency in water supply sometimes leading to no availability of water	
Distribution				Anjar	Reliable water supply in terms of frequency as stated by the ULB	
	Quality of Heavy reliance on water		Equivalent reliance on both private	Gandhidham	Lack of Quality assurance and supply availability leading people using bottled water	
	Supplied	private suppliers for drinking water		Anjar	High level of water contamination due to leakages and mixing of sewage making loose confidence in municipal water supply	
	NRW	Water losses	Water Losses are	Gandhidham	NRW is 30 % more than the set benchmark of 20 % by SLB	
		higher than SLB benchmark	under the SLB benchmark	Anjar	NRW is 15 % fulfilling the set benchmark of 20 % by SLB but the complaints suggest high leakages and the need for water audit persists	


Methodology

Objectives	Tasks	Tools	Outcomes
To understand the existing water situation from source and service delivery	• To understand the water service chain	 Literature Review – On Water service chain, 	• Will receive clear understanding of water
perspective in Anjar and Gandhidham	• To identify parameters which will help assessing the situation on Water Service Chain	Existing situation, regional water supply setting of the regionDesigning a questionnaire	situation and impacts due to the Narmada projects
To analyze the advances/lacunae of the	• FGDs with different stakeholders	to know about before and current scenario of water	
existing water situation in both the cities	• To conduct on field surveys to understand the existing water situation from citizen	 through the citizens perspective. (Primary Survey) Analyzing Primary and Secondary data 	
To explore urban water management practices to strengthen existing water source and service delivery	• To strengthen the scope for RWH by Community Participation and Policy level intervention	Literature Review- Focusing on water conservation practices and technological initiatives	• Compendium of best practices which can be easily adopted for Kachchh region
L	!		

Good Practices

Good Practices- Categorization and Selection

"Water Stress comprises of water availability, Quality and accessibility"

"Water Scarcity is an indicator of a problem with water availability"

On the basis of this defined terminology and concept, related good practices are identified/categorized by the issues exacerbating to water stress/scarcity and the initiatives to overcome it.

As per the key findings, Gandhidham and Anjar city are facing issues broadly related to Quality, Availability and accessibility making both the cities water stress. The selected case studies are similar with the situation and addresses each component and the issues with the initiatives to tackle it.

Good Practices-Source

Augmenting the Own Sources - Case of Chennai City

Issues the city was facing

shortage of fresh water sources

Higher dependency on Ground water

further ingression of saline water into fresh groundwater sources

Initiatives to tackle the issues

- Formulation of a regulation in Groundwater Act, 1987 which obligates obtaining permission for extraction and transportation of the water
- Camping on rainwater harvesting by CMWSSB
- Setting up RWH Cell
- Free technical assistance to all citizens for setting up RWH
- RWH as prerequisite for getting new water and sewerage connections
- Enacted legislation to control and regulate extraction under "The Chennai Metropolitan Area Ground Water (Regulation) Act 1987

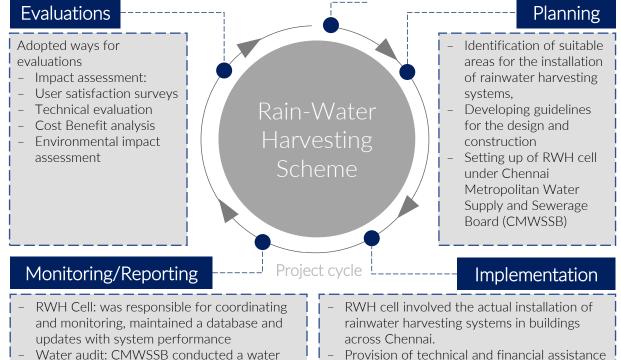
Groundwater tables improved by almost 50% from 2004-07

8.19 lakh RWH structures in 7 lakhs building

Considerable rise in ground water table

In a decade water fluctuated from 2.0 m -13.53 m to 1.2 m to 6.5 m

(Augmenting the Own Sources - Case of Chennai City)


Policy/Programme/Scheme

- A state driven initiative for Rainwater Harvesting Scheme
- A mandate was passed under Section 21 of the Tamil Nadu Panchayats Act, 1994, and Section 133 of the Tamil Nadu Municipality Act, 1994 making it mandatory to all buildings, including residential and commercial, to install RWH system
- Enacted legislation to control and regulate extraction under "The Chennai Metropolitan Area Ground Water (Regulation) Act 1987

Formation of Rain center in the city which

provide information, education and training

on RWH to residents of the city

- Water audit: CMWSSB conducted a water audit that measured the water levels in the city's aquifers, amount of water supplied and saved by RWH
- Reporting: The board reports on progress of the scheme to state gov.

How will it work for Gandhidham & Anjar ?

Provision for Rainwater Harvesting through legislative backing. The Gujarat Municipalities Act. 1963, under section 275, the claw gives power to make a bye-law

- Identify the potential sites/location for implementation RWH
- Development of rainwater guidelines for design and construction as per the city's need. The current guideline as per GDA & AADA, mandates compulsory setting up of RWH that have building coverage from 80 sqm to 4000 sqm
- Setting up RWH cell as a nodal agency under GWSSB which will be act a state representator

The RWH cell would help to assist the installation of RWH structure through technical assistance like awareness campaigns, training and educating the citizens. It would provide grants and subsidies to support the needy

The responsibility for monitoring will be of the RWH cell which will coordinate with building approval department for giving building approval after setting up RWH structure. Other responsibility would be to conduct water audit

Several Study related to impact assessments,

cost benefit: analysis looking cost of installing and maintaining RWH systems and compared it to the savings generated through reduced water usage.

And user satisfaction survey can help evaluation of the whole scheme

Good Practices-Services

Tracing the NRW: case of Surat, formation of a NRW cell

Issues the city was facing

20.4% NRW

Initiatives to tackle the issues

• Leak detection and mapping based on current and historical complaints from citizens/areas, then addressed by respective departmental or zonal leak detection team.

Absence of volumetric

SLB framework

metering at consumer level

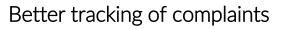
respect to reliability levels under the

SMC's reported NRW scores a 'D' with

- Ground level assessment by SMC's Hydraulic department
- Leakage repairs done
- Installation of SCADA system at WTPs
- GIS mapping of water networks
- Conducting periodic water audits (Every 3 years)
- SMC constituted an NRW Cell with the mandate to plan, develop, implement and monitor an action plan for reduction of NRW

2006 and 2007, complaints received (9,644 complaints in 2006 and 9,903 complaints in 2007) from various zones about pressure, leakages and breakages in the system.

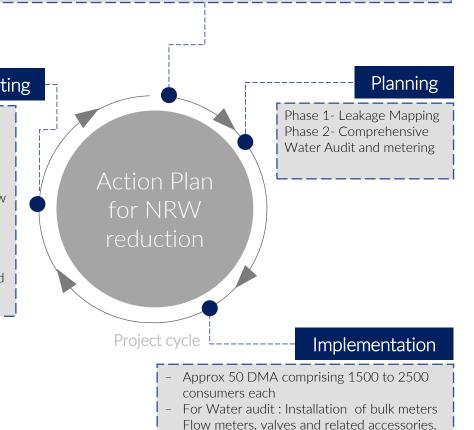
Reduction in leakages per km length of pipeline


Leak repairs and water savings

Identification and repair of over 185 frequent leakage points and over 110 contamination points post creation of the NRW cell. saving of 708 ML of potable water.

Reduction in number of complaints

Reduction in number of complaints from 9644 in 2005-06 to 2021 in 2010-11

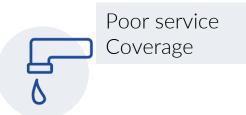

Tracing the NRW: case of Surat, formation of a NRW cell


Policy/Programme/Scheme

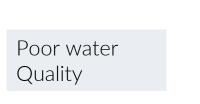
- A mandate to plan action plan for reduction of NRW by constituting a NRW cell
- Plan, develop, implement and monitor reduction of NRW under SMC

Monitoring/Reporting

- Installation of SCADA system for water distribution network and provide real time data Metering helped in flow
- of water and detects leaks
- Pressure monitoring
- Water quality testing, identified contaminated points



Good Practices-Services


Water Quality Assurance: Case of Puri City

Issues the city was facing

Initiatives to tackle the issues

- Ensure regular water quality testing: By established a Water Testing Laboratory to conduct and setting up Jalsakhis
- Invest in treatment facilities: The modern treatment plant uses a combination of technologies such as coagulation, flocculation, sedimentation, filtration, and disinfection to treat the water
- Maintain proper infrastructure: The GIS provides real-time information about the location of pipelines, pumping stations, and reservoirs addressing issues related to maintenance.
- Educate the public: The city has established a Community Water Center, which conducts outreach activities such as workshops, awareness campaigns
- **Promote conservation**: The city has established a Rainwater Harvesting Cell to promote the collection and storage of rainwater.
- Ensure transparency: The city has established a Water Information Management System, which provides real-time information on the quality of water supplied, water consumption, and billing.

Intermittent Supply with high water losses

Quick resolution of issues and complaints of the consumers enhanced the confidence of the public/communities

Jalsathis helped in transformation of field situation with enhanced confidence of the people in public water supply system

Employment Generation, especially women

Water Quality Assurance: Case of Puri City

Policy/Programme/Scheme

- Women volunteers will ensure the supply of clean drinking water through piped water systems.
- Formation of Jalsakhi mandals (SHG)

To capture the progress and suggestions for changes/additions

agenda,

- Water quality
- Quality of material and maintaining
- Safe water, Contamination through tanks
- Metering and Tariffs
- Customer contacts and complaints mechanism

How will it work for Gandhidham & Anjar?

Formulation of (SHGs) can be happen with collaboration of ULB's with The women & child development department (WCD), Government of Gujarat The implementation of this strategy would be done through ULBs • The SHG group will help Collecting samples for quality checking that would help to provide water supplied information in real time · Will address the complains and issues related water supply Awareness Campaign • A check list/ survey form should be capturing perception of water quality in the city to monitor the impacts of communication strategy

Conclusion

		Gandhidham	Anjar		Remarks	Learnings from the case studies / Improvements	
LCe	Water Availability	54 MLD vs 51 MLD	15 MLD vs 12 MLD	Gandhidham	89 LPCD which is on decreasing trend (supplied days)	For both the cities augmenting the own	
Source	Avanability	Demand Supply Gap	Demand Supply Gap	Anjar	91LPCD which is on increasing trend	sources through RWH would help catering the future estimated demand	
	Treatment	reatment Rambaugh WTP is not functional	Rambaugh WTP is function	Anjar WTP is functional but lacks on periodic	Gandhidham	Chlorination takes place with no other treatment process	The problem of minimum water requirement at WTP to run it, would be solved once the augmentation through own source happens
			check	Anjar	Treatment taking place as per the defined standards		
	Storage	Total storage	Total storage available 14.4 ML	Gandhidham	For 24X7 supply required storage is 18 ML		
Ы		available 32.8 ML		Anjar	For 24X7 supply required storage is 5 ML		
Distribution	Continuity of Water	Supplied hrs: 1-2 (Primary Survey) &	Supplied hrs: 0.5-1 (Primary Survey) &	Gandhidham	Inconsistency in water supply sometimes leading to no availability of water		
Dist	Supplied	Frequency of once in 3 days	Frequency of Alternate days	Anjar	Reliable water supply in terms of frequency as stated by the ULB	The 24x7 water supply approach will help resolve the problems related to continuity	
	Quality of water	Heavy reliance on	Heavy reliance on Lon both privato		Gandhidham	Lack of Quality assurance and supply availability leading people using bottled water	and Quality of water supplied and provisions can be adopted from the case of Puri city
	Supplied		and municipal supply for drinking	Anjar	High level of water contamination due to leakages and mixing of sewage making loose confidence in municipal water supply		
	NRW	Water losses higher	Water Losses are	Gandhidham	NRW is 30 % more than the set benchmark of 20 % by SLB	Setting up NRW and timely water auditing will help reduction in NRW, this will help	
		than SLB benchmark	under the SLB benchmark	Anjar	NRW is 15 % fulfilling the set benchmark of 20 % by SLB but the complaints suggest high leakages and the need for water audit persists	making the service efficient	

Thank You !

STUDY BY RUTVIK BHATT | PUI21295

DRP SPRING SEMESTER 2023 MASTER OF INFRASTRUCTURE PLANNING FACULTY OF PLANNING CEPT UNIVERSITY

